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Processing Electrophysiological Signals

for the Monitoring of Alertness
Abstract

This research project is concerned with the use of mathematical
techniques for proéeséing EEG signals associated with varying states of
alertness, It requires the development and implémentation of‘advanced
signal modeiing and data processing techniques; especially designed
for the representation and prediction of bicelectric signals useful
as estimators of states of alertness. In particular, our goal is to
develop and implement efficient technigues for processing and modeling
of EEG signals to extract the characteristics of signals associated with
varying states of alertness. New representations for FRG =ionals
which will enhance the features in estimating the states of alertnéss
are sought after. Fast algorithms for implementing real-time cqmputations
of alertness estimatesrhave also been developed. In this report, we
present a new realization of the phase-distortionless digital filter
which approaches real~time filtering and a new transform for EEG signals.
This transform not only provides new information for the alertness
estimates but alsc can be performed in real time. We are also developing
a statistical test for stationﬁrity‘in EEG signals. This test provides
a method for determining the duration of the EEG signals necessary in
estimating the short-time power or energy spectra for nonstationary
analysis of ERG signalé. It also helps in extracting the dynamic

properties of the signal process,
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Processing Electrophysiological Signals

for the Monitoring of Alertness

I. Introduction

The goal of this project is to develop and implement advanced
techniques for processing -and modeling of EEG signals to extfact the
characteristiés of signals associated with varying states of alertness.
These techniques are especially designed for theﬂrepresentation and pre-
diction of electrophysioclogical signals useful as estimators of states
of alertness. The purpose of signal representation is to transform
the data into a domain which is more convenient, for some reason, to
the particular user or users or for further analysis; e.g., déta reduction
or the enhancement of alertness estimates may be one of these goals.

Fourier s?ries or transform has proven useful in the analysis of
EEG signals in that it enhances the characteristics of the rhythmatic
activities in EEG signals., With the advent of fast-Fourier-transform
algorithm, the use of the Fourier spectral analysis has been widespread.
However, it requires that the signal be at least wide-sense stationary.
Since the EEG signals manifests the subject®s brain states, the statistical
characteristics vary as the states of the subject change during the
course of time. It is more natural to treat EEG signals as nonstationary
processes as proposed or as treated in [1] [2]. The general approach is
to use a short-iime power or energy spectral_analysis. The éuccess of
this approach depends on the signal process remairing stationary during
the duration for which the spectrum is obtained. The quantitative
determination of this duration is important for both the accuracy and

the efficiency of this analysis. We have used a sensitive test which



will not only determine the time interval of the g;gnal in which
significant change in certain statisticai characteristics is unlikely

!
to occur, but also detect any rapid changes in the interval.if these
statistical characteristics do vary, Aﬁ algorithm to implement this
test on a computer has been developed. In addition, this test will
also detect the transition of the brain states and aid in extracting
the dynamic properties of the process, We éhall describe this test
and its implementation and some preliminary resuits obtained by applying
it to the EEG data furnished by NASA-Ames Research Center.

As proposed, we have also searched for other representations
(transforms) of EEG signals which may furnish advantages over the Fourier
transform. The Fourier spectrum is a signal representation in which
the siﬁusoidal waveforms are used as basis functions. Different sets
of basis functions will result in different spectra. The search for a
new signal representation (transform) is tantamount to the quest for a
new set of basis functions, In particular, we have used a set of
orthonormalized square waves as basis functions to represent EEG signals,
This set of square waveforms is known as the Walsh functions [3]. The
resultant representation by using this set of square waveforms is thus
called the Walsh transform. The Walsh transform is especially suitable
for digital or digitized signals.' The algorithm for Walsh transform is
far faster than the fast-Fourier-transform, and it can be easily imple-
mented by hardwire programming. Real-time computation of the Walsh
gpectra is a cinch, From our analysis of the EEG data furnished by

NASA-Ames Research Center, the Walsh spectra enhance certain features

of the EEG signals. We shall describe our analysis of EEG signals by



the use of Walsh transform and demonstrate its advantages.

In the phase-uncertainty model of EEG signals {4], there is the
characteristic parameter b which is the propagation speed of the
variance used as a measure of the uncertainty of the phase. We belicve
that this parameter b will be a good measurc for alertness. In order
to obtain a time-varying b from the EEG signals, we have used a
8liding window and an estimator method rather than the correlation
technigue, The ultimate goal is to find a scala; relationship between
the time¥varying b and behavioral alertness measurements. It is
esgential to have a linecar-phase filter so that the phase information
in EEG will n0£ be distorted after filtering. The previously used time-
domain transversal filter does serve the purpose; however, it is
exiremely slow. We have implemented a frequency-domain linear-phase

filter which operates in real time. The details of this filter will be

described,



IT. A Test for Stationarity in EECG Signals

To treat EEG signals as nonstationary prbcesses,.many researchers
have used the short—time spectral analysis. This techniqﬁe depends oﬁ
the validity of the assumption that the signal remains at least wide-
sense stationary in the interval when the short-time power density
spectrum is being computed. For a process to be wide-sense stationary,
its mean must be a constant‘and its autocorrelation function must be
a function of the lagging interval alone. We ha;e devised a sensitive
method for detecting any changes of the stationarity conditions iﬂ fhe
signal prbcess for any intervals of time. The approach is to subject
the mean and mean square of the signal process to réndomness statistical
tests in order to identify non-random variations of the parameters ;f
interest in the course of time. This method will not only determine the
epoch within ;hich the signal process remains stationary but also will
detect the transition of the brain states and thus will aid in extracting
the dynamic properties of the process,

The mean, variance, and mean square are calculated for each successive
one-second éegment of data, These parameters then form a set of arrays
consisting of from 5 to 25 elements. Each array then is composed of

statistics representing an interval of data from 5 to 25 seconds, all

intervals starting at the same reference as shown below:
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Each of these arrays is then subjected to four tests of nonrando

since each test is sensitive to a differént type of trend. The four
I

i

are:
a) Run test
b) Trend test
¢) Mean Square Successive Differenceé test, and
d) Serial Correlation test.
Each test assigns a parameter value to each arréj. The parameter val
are then plotted versus interval length, and trends are displayed. I
there is a nonstationary trend, it will manifest itself by a signific

change in one or more of the test parameters. The procedure is block

diagrammed in Figure 1.

calculate |
divide into series of J‘lperform - Run ‘ 1
EEG == intervals w's + 2‘5 tests o _ Egggd
for each p's +y¢'s Ser. Cor
interval ' !

Figure 1 Block diagram for tests of nonstationarity

As an illustration, we have used the EEG data recorded while the
human subjects with eyes closed were stimulated by strdboscopic flash
at the rate of 10 flashes per second for 50 seconds, then no stimulat
for 50 secconds, then another 50 séconds of stimulation, etc., The EEG

data were furnished by Dr. J. Anliker of NASA-Ames Research Center.
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In this case the Mean Square Successive Differences test was the

most sensitive to the state of strobe--on or off. It showed a change
in test parameter starting shortly after the change in strobe status,

and lasting several seconds. This corresponds to expected latency



periods for photically stimulated subjects.

Results

Figures 2 - 8 illustrate the effect of the strobe turning off, At
the point marked T on the horizontal axis (e.g., 25 seconds in Figure
2), the strobe went off. This means (for Figure 2) the strobe was on
for 25 seconds following the reference time. In Figuré 3 the reference
time in the EEG data is 6.3 seconds later than in Figure 2, and, therefore,
the T indicating strobe off occurs after 18.7 ;econds (25 - 6.3).
In other words:hthe different figures represent the results of sliding
a 25-~second window along the EEG data with 6.3-second incrementé.

The dependent variable is the result of the Mean Square Successive

g

Differences test run on the mean (#), variance (02} and mean sguare

(&2) for each interval from 5 to 25 seconds. Thus, in Figure 3 the first

R = T T et o A mdoas
as,) ITORIYCOCOT OWX

1

[N
tn

last seven are combinations of pre- and post-sirobed terminations.

As can be seen, there is no trend before T 1in all figures (which
is reasonable since all the points represent strobed data), Starting
with Figure 3 a trend can be seen beginning approximately one second
after the cessation of strobing, and continuing for approximately 6
or 7 seconds. This is best seen in Figure 6, Figure 5 is a repeat of
Figure'4 with polynomial regression lines (4th order) fit to the data.
Examining this series of fipgures we observe that the effect of turning
off thé strobe is detected, and the nonstationary interval following this
event is identified.

Figures 7 and 8 show the results QI.MSSD test for stimulus-off EEG

signals where no trends have been detected,
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III. Representations of EEG Signals

In oﬁr search for new representa?ioﬂs of EEG signals, we aimed
at the efficiency of the representations[and their enhancement of varibus
desired features of the signal; The Karhunen-Loéve expansion offers
thermost efficient representation; however, it suffers from its difficulty
in implementation. Fourier transform has proven to be useful in §ome
EEG analysis. In the course of our work, we have developed and imple-
mented a statistical representation in terms of'dmplitude, frequency,
and phase of EEG signals [5] and the representation in terms of in-
phase and quadrature components [é]; we have also looked into the
Karhunen-Loéve expansion as discussed in the previous reports. The
Walsh transform of EEG signals offers potentials not only in its efficiency
of representation but also in its enhancement of certain desirable
features of EEG signals. The Walsh transform is a representation in
terms of a set of Walsh functions which were originally developed by
J. Walsh in 1923 [3] and gained populatiry since 1968 [7]. Preliminary
results showed that the Walsh specéra of EEG in the various sequency
bands gave a better indication of the alertness states.

The representation of a signal x(t} in terms of the set of Walsh

functions is given by

[ae3

x(t) = ZW wal(k,i\ , 0 t=sT
ko T /

k=0
where Lk is the number of zero crossings of Walsh functions. Lackey
[2] presented a good review of the construction of Walsh functions from
products of the incomplete, but simpler set of Radamacher functions,

The Walsh coeflicients are obtained by

14



1 ' , t

Wk = x{t) wal (k, ~—-) at .
0

For a digital (or discrete-time) signal which consists of N

sampled data points, we may represent the elements of the digital signal
by‘
N-1 .
X{m) = E Wk wal (m,k) , m = 0, _1: 2, ...y N-1
k:O i

The Walsh coefficients are then given by

N-1 .
wk=—§— 2 x(m) wal (m,k) , k=0, 1, 2, ..., N-1
m=0

The N-tuple formed by Walsh coefficients in ascending order of the

index k is called the scquency ordered discrete Walsh transform;

T
i.e., =® = [Wo, Wl, ey WN—I] . Using the property that the discrete

Walsh function is symmetric with respect to its srguments; i.e.,

wal (k,m) = wal (m,k) , we can write the inverse Walsh transform as

N~1
x(k) = M%_ E f(m) wal (k,m) , k=0, 1, 2, ... , N-1
m=0
, th . .
where x(k) is the k element of x . It is thus shown that the

forward transform and the inverse transform have exactly the =ame
operationg. The Walsh transforms are implemented through the fast
Walsh transform (FWT) algorithms,

Typically, FWT schemes exploit the structure of the FFT except

that the role of

in the FFT [9] is replaced by -1 in the FWT. This makes IWT so

much faster than the FFI'. The FWT algorithm requires only addition

15



and subtraction. Notable algorithm for the computatibn of FﬁT has beeﬁ
described in [10].

There are some iﬁportant differences between Signalslfepresented
in the Walsh domain and those in the Fourier domain. First of all,
the digital signal N-vector x is represented exactly Ey the first
N Walsh functions., This means that sampled data of finite duration is
also sequency limited. This is, of course, not true in the frequency;

domain representation where a time-limited signal is not band limited,

One can obtain finite segments of a signal x(t) by multiplying

the signal by a "window functien" w(t); that is, xp(t) = x(t) - w(t) ,
where
1, 0=t T
wi{t) =
0, t>T
sn that
x(t), 0= t=<T
x (t) =
p 0, t=>T

Now, let the Fourier transform of x{i) be X(f); i.e.,

Flx(t)] = X(£), then Flx{t) * w(t)] = X(L) * W(E)

where

sin af

w = ;
(1) = x 2R3

and K and a are constants; and * denotes convolution, This result
shows that the Fourier transform is distorted through the convolution
with the frequency-domain window function. It is well known that the
error may be minimized by applying a corrective weighting function

such as Hamming window. This extra processing is used solely to correct

the distortion effects of the data windows, Such distortion does not

16



occur in the Walsh domain’because the window function is one of the basis
functions; namely, w(t) = wal (0,t) . This is easily seen by the
following reasoning: Taking the same data window w(t), we obtain for the

finite segment of the signal x(t) as

>8]

x(t) - w(t) = Z ,Wk wal (k,t) * wal (0,t)
k=0

Since the complete set of Walsh functions is closed in multiplication
and wal(k,t) * wal (m,t) = wal (k(:)m,t) where (:) denotes module 2

addition with no carry; i.e.,

1@0:1
1@1:0
o (B o=0 ,

wal (k,t) * wal (0,t) = wal (k,t} and hence =x(t) w(t) = EE:Wk wal (k,t).
It is clear that the window function w(t) introduces no d?stoftion at
all in the Walsh domain.

In summary, the Walsh-domain representation has two distinct
advantages over the Fourier-domain representation for discrete signals
in addition to its compﬁtational speed. First, the data is exactly
represented by a finite set of Walsh functions, and secondly, no
distortion is introduced by the finite window function. Therefore, no
correction such as the use of Hamiming or Hanning window is necessary.

We shall now turn our discussion to some properties ofVWalsh functions
which we may utilize to our advéntage._ Let us consider a signal fl(t)
which is periodic with period 2T and a signal fz(t) which is the
same as fl(t) except that it has period 7T as shown in Figure 9.

In other words, fzﬂt) is a time-compressed version of fl(t); i.e.,

17



f2(t) = fl(Zt) y £ = 0.

fl(t)

fz(t)

/

Figure 9 Time compression of a periodic signal

T 2T t

Representing the signals .fl(t) and fz(t) in the Walsh domain, we

obtain i
[x23
fl(t) = E Wk wal (k,t)
k=0
and
. © |
1
fz(t) = E Wk wal (k,t)
k=0

The time compression condition fz(t) = fl(Zt) implies that

feu] [es]
E wi wal (k,t) = E W_owal (k,2t)
k=0 k=0

18



From the definition of the Walsh functions, we have wal (k,2t) =
wal (2k,t) ; hence, _
) 0 f

E wlj; wal (k,t) = _S_ W owal (2k,t) .
=0 : k=0 ' .
Therefore,

' 1

WO = WO

Wl = 0

1 - i

1

W_ =W

2 1
1

W =0
3
1

W' =W
4

W1 =W k
Kk~ xfz even
1
wo- o , &k cad
For further compression in time such as fz(t) = fl(mt), where
£ )
m= 2", 4=1, 2, ..., we obtain

k
w , [___] is an integer
k/m m

g, other@ise

In essence, it says that compressing time by a power of 2 leaves the
Walsh spectrum completely unaffected except for intervening zeros.

This property may be used effectively for the detection of subharmonics
in a signal. Tor example, we show the spectrum-of'a sighal which has
period T = 1.024 seconds in Figures 10 and 11. TFigure 10 shows the
spectrum without =subperiods and Figure 11 shows that with 8 subperiods.

Notice there are 8 intervening =zeros in Figure 11.

19
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The convergence property of the Walsh representation compares verf
favorably with the Fourier representation. To demons£rate, we computed
tﬁe percentage loss in the.signal energy (or the normalized mean squared
errgr) of a section of EEG about 1 second in length for both the Fourier
and Walsh transforms. The results are plotted in Figure 12. It i;
clear that the Walsh transform has a better convergence property than
. the Fourier transform in the lower range, In other words, in the range
between 0 to 40 terms the Walsh tranéform requir;s fewer number of terms
to achievé the same amount of mean-squared error as that required by
the Fourier.transform. Figure 13 shows a typical Walsh and Fourier
spectra of a record of EEG signals, ©Some preliminary results have shown
that the Walsh transform does enhance certain features of EEG signéls.

Further work is in progress for utilizing these features for EEG

classification purposes,
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IV. . A Digital Phase-Distortionless Filter Operating in the Frequency
Domain

In phase uncertainty modei for the EEG signals to extract the

parameter b as a measurement of alertness, it is critical to filter

the EEG signal by a phase-distortionless filtef. Such a filter operating
in the time domain was used in previous studies, Sincé this filtering
reguires that the EEG signal convolves with the finite duration impulse
response of the filter, it is extremely slow. Tﬂis, of course, prohibits
real-time usage. A phase—distortionless filter must have linear-phase
characferistics in the frequency domain. In order for a ditial filter

to possess linear phase characteristics, the impulse response of its

system function must satisfy the condition

h(n) = h(N - 1 - n) . , ' .
This requirement is easily met in digital filtering. It results in a
linear phase shift which corresponds to a delay of (N—l)/z samﬁle
points. The input data x(n) is first partitioned into data segments

xk(n) of length M ; i.e.,

xn) , kM = n = (k+l)M-1
xk(n) =
4] , otherwise

Hence, x(n) is simply the sum of the xk(n) 's or

[» ]
x(n) =Z X (n)
k
k==

and the filtered output y{n) is the result of convolution of the two

scquences; i.e.,

D
¥(n) = x(n) * h(n) = Zxk(n) * hin)

k=—c

25



Each of the terms in the convolution sum is of length (N-Hi-1)
 where

N filter length

M

data length ,
For -each output point, there are numerous multiplications and additions.
The astronomical number of such operations renders this scheme éxtremely
'slow. In order to speed up the proceés, other means.must be found.
We decided to uge the frequency-domain approach. From the above discussion,
we found thaf to effect the convolution in the frequency domain, the
:transforms must be computed on a basis'of at least (N+M-1) points.
The (N-1) and (M-1) locations subsequent to the Nth filter coefficient and
the Mth data point, are respectively filled with zeros before each
transform is taken. Since the FFT results in a circular convolution
. of the two.ééﬁﬁences, the desired output sefuence is obtained by reconstructing
the filtered sections in such a way that convolution is achieved. The
filtered seétions are simply the results of invefsé tfansform of the
sequence obtained by multiplying the transformed data sequence, term
by term, with the transfofmed filter caefficient sequence, The procedure
for reconstructing the filtered sections is referred to as the overlap-
add method, This complete operation invblves FFT and multiplicatibns
~in one scope for obtaining the whole section. of the filtered resultsi whereas
the time-domain operation requires multiplications and édditions for
each ouput.point.

Moreover, additional savings in time could be achievéd by this frequency-
domain operated filtering procedure if both of the signal and filter

sequences are‘real. In general, the filtered sections yk(n) are
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complex; i.e,,

il

Re [yk(n):! + jIm [yk(n):' ,
Re[xk(n)] * Re [h(n)] - Im[xk(n) * Im[h(n)}
+ j;Im[xk(nﬂ % Re[h(nﬂ + Re xk(n{] * Im[h(ni}f .

yk(n)

il

Our filter is real; hence,
Im [h(n)] = 0
and yk(n) becomes

Im xk(n) * Re[h(n{l& .

yk(n)' = Re[xk(n)] * Re[h(n)] + j

If the data sequence is also real, two separate convoiutioné with the
same kernel sequence can be performed simultaneously, Therefore, when
convolving real signals with real impulse responses, the FFT is capahie
of double performance. This is achieved by loading the data in both
the real aﬁaiimaginary parts of the datalsequence to be transformed
and processed with the same impulse response of the filter. Thus,
we are able_to éave additional time in the filtering process. The
double-performance overlap-add method is depicted in Figure 14 in which
.section & is discarded, as it constitutés the inherent delay. fThe
subsequent sections in Figure 14 are dealt with in the foliowing'manner:
Unprimed and primed sections are added together term by term and the
continuous filtered output is obtained by sfringing together the
resultant sections,

A few words about the judicious choice of the data length M and
the filter impulse response length N are in order. There are two
ma jor consideratibns: (a)} N must be sufficiently large so that the

ratio of the Hamming weighted impulse response side-lobe width to the

v
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Figure 14 Double~performance overlap-add method

main-lobe width is sufficiently small in order to achieve a sharp

procedure déscribed previbusly will be more efficient computationally
when N =M-+ 1 and N+ M -1 = 2i » Where i
our.application, we chose N = 4097 and M =
satisfy the above conéiderations. The frequency-domain operated phase
distortionless digital filter which we have designed and used has

a passband of 8 to 13 Hz. Its amplitude response characteristic is
shown in Figure 15. ©Notice the sharp cutoff feature of this filter,
We show the flowchart of this filter in Figure 16, and the resultant

filtered output of a section of EEG signal by the use of frequency-
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“cutoff in the frequency response characteristic; (b) The overlap-add

is an integer,

This choice does
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domain filtering in Figuré 18. From thése figures we observe:thét the
resultant outputs are identical.

From previous discussion, we may conclude that the phase-distortionless
filtering in fhe frequency domain is vefsatile and faster than the time-
domain filtering. The use of FFT permits the filtering to be accoﬁplished
on real-tine basis; whereas the time-domain filtering for the séme
length of data will take af least fifty times ldnger to accoﬁplish.

In other words, the frequency-domain filtering needs only 1/50 of the
time needed for the time-domain filtering. Besides, the FFT is aléo
capable of double performance discussed previously. We may use this
double—dufy feature to filter simultaneously either two independenf
éhaﬁnels of EEG signals or one channel of EEG signals in two different

bands of interest.

33



V. Conclusion

The work has been progressing along the liﬁes as p;oposed. Our
preliminary results presented in this report show great promisé. The
testslfor stationarity in EEG signals are designed for the determination
of the length of signal interval iﬁ which spectral analysis is vélid and -
have great potential in extracting the dynamic characteristics of the
Signal process., This will, undoubtedly, help in the detection of
changing states of alertness. In the area of searching for néw represen-
tation, we described the use of Walsh transform and showed its advantages,
In the modeling of EEG signals, we described, in detail the phase-
distortionless digital filter in the freﬁuency domain{ Its versatility
and speed have been proven from.our fesults. Thié filter can be operated
in real time in contrast to the time-domain filtering téchniqued used
previously which is fifty times slower. Without question, this filtering
technique will speed up the estimate of the paramete; b in the model

for alertness measure,
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